Sombers Lab


 Sombers Group Publications

  1. Characterization of a Multiple-Scan-Rate Voltammetric Waveform for Real-Time Detection of Met-Enkephalin.
    Calhoun S, Meunier CJ, Lee CA, McCarty GS, Sombers LA. ACS Chem Neurosci. 2018 Dec 20. doi: 10.1021/acschemneuro.8b00351. [Epub ahead of print] PMID: 30571911

  2. NMDA Receptor-Dependent Cholinergic Modulation of Mesolimbic Dopamine Cell Bodies: Neurochemical and Behavioral Studies.
    Spanos M, Xie X, Gras-Najjar J, White SC, Sombers L.A.. ACS Chem Neurosci. 2018 Nov 21. doi: 10.1021/acschemneuro.8b00492. [Epub ahead of print] PMID: 30412381

  3. Local μ-Opioid Receptor Antagonism Blunts Evoked Phasic Dopamine Release in the Nucleus Accumbens of Rats.
    Gómez-A A, Shnitko TA, Barefoot HM, Brightbill EL, Sombers L.A., Nicola SM, Robinson DL. ACS Chem Neurosci. 2018 Nov 6. doi: 10.1021/acschemneuro.8b00437. [Epub ahead of print] PMID: 30388365

  4. Carbon-Fiber Microbiosensor for Monitoring Rapid Lactate Fluctuations in Brain Tissue Using Fast-Scan Cyclic Voltammetry.
    Smith SK, Gosrani SP, Lee CA, McCarty GS, Sombers L.A. Anal. Chem. 2018 Nov 6;90(21):12994-12999. doi: 10.1021/acs.analchem.8b03694. Epub 2018 Oct 25. PMID: 30295022

  5. Quantitative Comparison of Enzyme Immobilization Strategies for Glucose Biosensing in Real-Time Using Fast-Scan Cyclic Voltammetry Coupled with Carbon-Fiber Microelectrodes.
    Smith S.K., Lugo-Morales L.Z., Tang C., Gosrani S.P., Lee C.A., Roberts J.G., Morton S.W., McCarty G.S., Khan S.A., Sombers L.A. Chemphyschem. 2018 Jan 9. doi: 10.1002/cphc.201701235.

  6. Electrochemical Selectivity Achieved Using a Double Voltammetric Waveform and Partial Least Squares Regression: Differentiating Endogenous Hydrogen Peroxide Fluctuations from Shifts in pH.
    Meunier C.J., Mitchell E.C., Roberts J.G., Toups J.V., McCarty G.S., Sombers L.A. Anal Chem. 2018 Jan 5. doi: 10.1021/acs.analchem.7b03717.

  7. Selective and Mechanically Robust Sensors for Electrochemical Measurements of Real-Time Hydrogen Peroxide Dynamics in Vivo.
    Wilson L.R., Panda S., Schmidt A.C., Sombers L.A. Anal Chem. 2018 Jan 2;90(1):888-895. doi: 10.1021/acs.analchem.7b03770. Epub 2017 Dec 15.

  8. Fast-Scan Cyclic Voltammetry: Chemical Sensing in the Brain and Beyond.
    Roberts J.G., Sombers L.A. Anal Chem. 2018 Jan 2;90(1):490-504. doi: 10.1021/acs.analchem.7b04732. Epub 2017 Dec 15. No abstract available.

  9. Spectroelectrochemical Characterization of the Dynamic Carbon-Fiber Surface in Response to Electrochemical Conditioning.
    Mitchell E.C., Dunaway L.E., McCarty G.S., Sombers L.A. Langmuir. 2017 Aug 15;33(32):7838-7846. doi: 10.1021/acs.langmuir.7b01443. Epub 2017 Aug 1.

  10. The Background Signal as an In Situ Predictor of Dopamine Oxidation Potential: Improving Interpretation of Fast-Scan Cyclic Voltammetry Data.
    Meunier C.J., Roberts J.G., McCarty G.S., and Sombers L.A. ACS Chemical Neurosci., 2017. 8(2): 411-419. DOI: 10.1021/acschemneuro.6b00325

  11. Simultaneous Voltammetric Measurements of Glucose and Dopamine Demonstrate the Coupling of Glucose Availability with Increased Metabolic Demand in the Rat Striatum.
    Smith S.K., Lee C.A., Dausch M.E., Horman B.M., Patisaul H.B., McCarty G.S., Sombers L.A. ACS Chemical Neurosci., 2017. 8(2): 272-280. DOI: 10.1021/acschemneuro.6b00363

  12. Unmasking the Effects of L-DOPA on Rapid Dopamine Signaling with an Improved Approach for Nafion Coating Carbon-Fiber Microelectrodes.
    Qi L., Thomas E., White S.C., Smith S.K., Lee C.A., Wilson L.R., Sombers L.A. Anal. Chem., 2016. 88(16): 8129-36.

  13. The Hydroxyl Radical is a Critical Intermediate in the Voltammetric Detection of Hydrogen Peroxide.
    Roberts J.G., Voinov M.A., Schmidt A.C., Smirnova T.I., Sombers L.A. J.Amer.Chem.Soc. (Communication), 2016. 138(8): 2516-9.

  14. Reducing Sample Rate of In Vivo Biochemical Measurements using Fast-Scan Cyclic Voltammetry.
    Amos A., Roberts J., Qi L., Sombers L., and McCarty G. IEEE Sensors, 2014. 14(9): 2975-80.

  15. Multiple Scan Rate Voltammetry for Selective Quantification of Real-Time Enkephalin Dynamics.
    Schmidt A.C., Dunaway L.E., Roberts J.G., McCarty G.S., and Sombers L.A. Anal. Chem. 2014, 86(15): 7806-12.

  16. Peroxygenase and Oxidase Activities of Dehaloperoxidase-Hemoglobin from Amphitrite ornate.
    Barrios D., D’Antonio J., McCombs N., Zhao J., Franzen S., Schmidt A., Sombers L., and Ghiladi R. J. Am. Chem. Soc. 2014, 136(22): 7914-7925.

  17. An In Situ Calibration Strategy for Voltammetric Measurements In Vivo.
    Roberts J.G., Toups J.V., Eyualem E.*, Sombers L.A. Anal. Chem. 2013, 85(23): 11568-75.

  18. Carbon Nanotube Yarn Electrodes for Enhanced Detection of Neurotransmitter Dynamics in Live Brain Tissue.
    Schmidt A.C., Wang X., Zhu Y., Sombers L.A. ACS Nano. 2013, 7: 7864-7873.

  19. Enzyme-Modified Carbon-Fiber Microelectrode for the Quantification of Dynamic Fluctuations of Nonelectroactive Analytes Using Fast-Scan Cyclic Voltammetry.
    Lugo-Morales L.Z., Loziuk P.L.*, Corder A.K.*, Toups J.V., Roberts J.G., McCaffrey K.A., Sombers L.A. Anal. Chem. 2013, 85: 8780-8786.

  20. Quantitation of Hydrogen Peroxide Fluctuations and their Local Modulation of Dopamine Dynamics in the Rat Dorsal Striatum using Fast-Scan Cyclic Voltammetry.
    Spanos M., Gras-Najjar J., Letchworth J.M., Sanford A.L., Toups J.V., Sombers L.A. ACS Chemical Neurosci. 2013, 4(5): 782-789.

  21. Trace Metal Complexation by the Triscatecholate Siderophore Protochelin: Structure and Stability.
    Harrington J.M., Bargar J.R., Jarzecki A.A., Roberts J.G., Sombers L.A., Duckworth O.W. Biometals, 2012 Apr; 25(2): 393-412.

  22. Comparison of Electrode Materials for the Detection of Rapid Hydrogen Peroxide Fluctuations using Background Subtracted Fast Scan Cyclic Voltammetry.
    Roberts J.G., Hamilton K.L.*, Sombers L.A. Analyst. 2011, 136 (17): 3550 – 3556.

  23. Voltammetric Detection of Hydrogen Peroxide at Carbon Fiber Microelectrodes.
    Sanford A.L., Morton S.W.*, Whitehouse K.L.*, Oara H.M.*, Lugo-Morales L.Z., Roberts J.G., Sombers L.A. Anal. Chem. 2010, 82(12): 5205-10.

  24. Specific Oxygen-Containing Functional Groups on the Carbon Surface Underlie an Enhanced Sensitivity to Dopamine at Electrochemically Pretreated Carbon Fiber Microelectrodes.
    Roberts J.G., Moody B.P., McCarty G.S., Sombers L.A. Langmuir 2010, 26(11): 9116-22.